Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Populus Class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems.

Identifieur interne : 002C92 ( Main/Exploration ); précédent : 002C91; suivant : 002C93

The Populus Class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems.

Auteurs : Juan Du [États-Unis] ; Eriko Miura ; Marcel Robischon ; Ciera Martinez ; Andrew Groover

Source :

RBID : pubmed:21386988

Descripteurs français

English descriptors

Abstract

The developmental mechanisms regulating cell differentiation and patterning during the secondary growth of woody tissues are poorly understood. Class III HD ZIP transcription factors are evolutionarily ancient and play fundamental roles in various aspects of plant development. Here we investigate the role of a Class III HD ZIP transcription factor, POPCORONA, during secondary growth of woody stems. Transgenic Populus (poplar) trees expressing either a miRNA-resistant POPCORONA or a synthetic miRNA targeting POPCORONA were used to infer function of POPCORONA during secondary growth. Whole plant, histological, and gene expression changes were compared for transgenic and wild-type control plants. Synthetic miRNA knock down of POPCORONA results in abnormal lignification in cells of the pith, while overexpression of a miRNA-resistant POPCORONA results in delayed lignification of xylem and phloem fibers during secondary growth. POPCORONA misexpression also results in coordinated changes in expression of genes within a previously described transcriptional network regulating cell differentiation and cell wall biosynthesis, and hormone-related genes associated with fiber differentiation. POPCORONA illustrates another function of Class III HD ZIPs: regulating cell differentiation during secondary growth.

DOI: 10.1371/journal.pone.0017458
PubMed: 21386988
PubMed Central: PMC3046250


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Populus Class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems.</title>
<author>
<name sortKey="Du, Juan" sort="Du, Juan" uniqKey="Du J" first="Juan" last="Du">Juan Du</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute of Forest Genetics, Pacific Southwest Research Station, U.S. Forest Service, Davis, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Forest Genetics, Pacific Southwest Research Station, U.S. Forest Service, Davis, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Miura, Eriko" sort="Miura, Eriko" uniqKey="Miura E" first="Eriko" last="Miura">Eriko Miura</name>
</author>
<author>
<name sortKey="Robischon, Marcel" sort="Robischon, Marcel" uniqKey="Robischon M" first="Marcel" last="Robischon">Marcel Robischon</name>
</author>
<author>
<name sortKey="Martinez, Ciera" sort="Martinez, Ciera" uniqKey="Martinez C" first="Ciera" last="Martinez">Ciera Martinez</name>
</author>
<author>
<name sortKey="Groover, Andrew" sort="Groover, Andrew" uniqKey="Groover A" first="Andrew" last="Groover">Andrew Groover</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21386988</idno>
<idno type="pmid">21386988</idno>
<idno type="doi">10.1371/journal.pone.0017458</idno>
<idno type="pmc">PMC3046250</idno>
<idno type="wicri:Area/Main/Corpus">002E91</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002E91</idno>
<idno type="wicri:Area/Main/Curation">002E91</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002E91</idno>
<idno type="wicri:Area/Main/Exploration">002E91</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Populus Class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems.</title>
<author>
<name sortKey="Du, Juan" sort="Du, Juan" uniqKey="Du J" first="Juan" last="Du">Juan Du</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute of Forest Genetics, Pacific Southwest Research Station, U.S. Forest Service, Davis, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Forest Genetics, Pacific Southwest Research Station, U.S. Forest Service, Davis, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Miura, Eriko" sort="Miura, Eriko" uniqKey="Miura E" first="Eriko" last="Miura">Eriko Miura</name>
</author>
<author>
<name sortKey="Robischon, Marcel" sort="Robischon, Marcel" uniqKey="Robischon M" first="Marcel" last="Robischon">Marcel Robischon</name>
</author>
<author>
<name sortKey="Martinez, Ciera" sort="Martinez, Ciera" uniqKey="Martinez C" first="Ciera" last="Martinez">Ciera Martinez</name>
</author>
<author>
<name sortKey="Groover, Andrew" sort="Groover, Andrew" uniqKey="Groover A" first="Andrew" last="Groover">Andrew Groover</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Differentiation (genetics)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Genes, Plant (physiology)</term>
<term>MicroRNAs (pharmacology)</term>
<term>MicroRNAs (physiology)</term>
<term>Microarray Analysis (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Stems (cytology)</term>
<term>Plant Stems (genetics)</term>
<term>Plant Stems (growth & development)</term>
<term>Plant Stems (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Transcription Factors (classification)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcription Factors (physiology)</term>
<term>Wood (genetics)</term>
<term>Wood (growth & development)</term>
<term>Wood (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse sur microréseau (MeSH)</term>
<term>Bois (croissance et développement)</term>
<term>Bois (génétique)</term>
<term>Bois (métabolisme)</term>
<term>Différenciation cellulaire (génétique)</term>
<term>Facteurs de transcription (classification)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Facteurs de transcription (physiologie)</term>
<term>Gènes de plante (physiologie)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Tiges de plante (croissance et développement)</term>
<term>Tiges de plante (cytologie)</term>
<term>Tiges de plante (génétique)</term>
<term>Tiges de plante (métabolisme)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
<term>microARN (pharmacologie)</term>
<term>microARN (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>MicroRNAs</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Facteurs de transcription</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Bois</term>
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Plant Stems</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Differentiation</term>
<term>Plant Stems</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Stems</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bois</term>
<term>Différenciation cellulaire</term>
<term>Facteurs de transcription</term>
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Stems</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bois</term>
<term>Facteurs de transcription</term>
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>microARN</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Gènes de plante</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Genes, Plant</term>
<term>MicroRNAs</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Microarray Analysis</term>
<term>Phylogeny</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse sur microréseau</term>
<term>Phylogenèse</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The developmental mechanisms regulating cell differentiation and patterning during the secondary growth of woody tissues are poorly understood. Class III HD ZIP transcription factors are evolutionarily ancient and play fundamental roles in various aspects of plant development. Here we investigate the role of a Class III HD ZIP transcription factor, POPCORONA, during secondary growth of woody stems. Transgenic Populus (poplar) trees expressing either a miRNA-resistant POPCORONA or a synthetic miRNA targeting POPCORONA were used to infer function of POPCORONA during secondary growth. Whole plant, histological, and gene expression changes were compared for transgenic and wild-type control plants. Synthetic miRNA knock down of POPCORONA results in abnormal lignification in cells of the pith, while overexpression of a miRNA-resistant POPCORONA results in delayed lignification of xylem and phloem fibers during secondary growth. POPCORONA misexpression also results in coordinated changes in expression of genes within a previously described transcriptional network regulating cell differentiation and cell wall biosynthesis, and hormone-related genes associated with fiber differentiation. POPCORONA illustrates another function of Class III HD ZIPs: regulating cell differentiation during secondary growth.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21386988</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>09</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2011</Year>
<Month>Feb</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>The Populus Class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems.</ArticleTitle>
<Pagination>
<MedlinePgn>e17458</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0017458</ELocationID>
<Abstract>
<AbstractText>The developmental mechanisms regulating cell differentiation and patterning during the secondary growth of woody tissues are poorly understood. Class III HD ZIP transcription factors are evolutionarily ancient and play fundamental roles in various aspects of plant development. Here we investigate the role of a Class III HD ZIP transcription factor, POPCORONA, during secondary growth of woody stems. Transgenic Populus (poplar) trees expressing either a miRNA-resistant POPCORONA or a synthetic miRNA targeting POPCORONA were used to infer function of POPCORONA during secondary growth. Whole plant, histological, and gene expression changes were compared for transgenic and wild-type control plants. Synthetic miRNA knock down of POPCORONA results in abnormal lignification in cells of the pith, while overexpression of a miRNA-resistant POPCORONA results in delayed lignification of xylem and phloem fibers during secondary growth. POPCORONA misexpression also results in coordinated changes in expression of genes within a previously described transcriptional network regulating cell differentiation and cell wall biosynthesis, and hormone-related genes associated with fiber differentiation. POPCORONA illustrates another function of Class III HD ZIPs: regulating cell differentiation during secondary growth.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Juan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Forest Genetics, Pacific Southwest Research Station, U.S. Forest Service, Davis, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Miura</LastName>
<ForeName>Eriko</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Robischon</LastName>
<ForeName>Marcel</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martinez</LastName>
<ForeName>Ciera</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Groover</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>02</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002454" MajorTopicYN="N">Cell Differentiation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046228" MajorTopicYN="N">Microarray Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>10</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>02</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21386988</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0017458</ArticleId>
<ArticleId IdType="pmc">PMC3046250</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Biol. 2003 Oct 14;13(20):1768-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14561401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 7;411(6838):709-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Nov;19(11):3379-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18055602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):643-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2009 Nov;4(11):1028-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19838072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Nov;50(11):1950-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19808805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):495-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17307928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1995 Sep;121(9):2723-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7555701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2005 Apr;8(4):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1995 Dec;121(12):4171-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8575317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Aug 12;19(12):1572-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12912839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Dec;44(12):1350-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14701930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jan;17(1):61-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15598805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Aug;61(6):917-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16927204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Nov;156(3):1363-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11063708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Jul 1;16(13):1616-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12101121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Dev. 2006 Jul-Aug;8(4):350-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16805899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Aug 18;23(16):3356-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15282547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(3):469-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16411950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jul;153(3):906-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20488898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2001 Jul-Aug;92(4):371-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11535656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14732-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11724959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jan;20(1):11-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18178768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 May;18(5):1121-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1998 Aug;125(15):2935-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9655815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):549-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):607-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16617092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 May;10(5):210-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15882652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(4):652-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Nov;11(11):2139-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2278-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Aug;132(16):3657-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16033795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):3158-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Apr;20(4):920-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Apr;42(1):84-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15773855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 May;173(1):373-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16489224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):11081-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16832061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1979 Apr;63(4):609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16660777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Dec;60(6):1000-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jul;15(7):1591-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 May;18(5):1134-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Sep;20(9):2420-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18805991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Mar;17(3):691-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15705957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2001 Aug 21;11(16):1251-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11525739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 7;411(6838):706-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2009;9:209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19698139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 May;186(3):577-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20522166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Dev Biol. 2008;52(7):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18956325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:431-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1982 Dec;70(6):1631-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662733</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Groover, Andrew" sort="Groover, Andrew" uniqKey="Groover A" first="Andrew" last="Groover">Andrew Groover</name>
<name sortKey="Martinez, Ciera" sort="Martinez, Ciera" uniqKey="Martinez C" first="Ciera" last="Martinez">Ciera Martinez</name>
<name sortKey="Miura, Eriko" sort="Miura, Eriko" uniqKey="Miura E" first="Eriko" last="Miura">Eriko Miura</name>
<name sortKey="Robischon, Marcel" sort="Robischon, Marcel" uniqKey="Robischon M" first="Marcel" last="Robischon">Marcel Robischon</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Du, Juan" sort="Du, Juan" uniqKey="Du J" first="Juan" last="Du">Juan Du</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C92 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002C92 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21386988
   |texte=   The Populus Class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21386988" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020